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Contributions to the fifth-order nonlinear optical susceptibility ��5� of a collection of homogeneously broad-
ened two-level atoms that scale as N2��at

�3��2 and N2��at
�3��2, where �at

�3� is the lower-order atomic hyperpolariz-
ability and N is the atomic number density, are predicted theoretically. These “cascaded” contributions are a
consequence of local-field effects. We determine them from a fifth-order solution of the Lorentz-Maxwell-
Bloch equations. They are missing from a straightforward generalization of Bloembergen’s result for the local
field correction to the second order nonlinearity, but are recovered by a careful application of his general
approach. We find that at high atomic densities �N�1015 cm−3� the value of the cascaded third-order contri-
bution can be as large as the “direct” fifth-order term in the expression for the fifth-order susceptibility.
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I. INTRODUCTION

It is well known that the field driving an atomic transition
in a material medium, the local field, is different in general
from both the external field and the average field inside the
medium. The difference from the average field does not play
a significant role when one considers a low-density medium.
To describe the optical properties of such a system, one can
use the macroscopic �ensemble average� field in considering
the Maxwell-Bloch equations. However, if the atomic den-
sity of a system exceeds �1015 cm−3 �1�, the influence of
local-field effects becomes significant and cannot be ne-
glected.

Local-field effects lead to a modification of the optical
properties of dense media and, consequently, serve as a
source of interesting new phenomena. For instance, steady-
state solutions to the local-field-corrected Maxwell-Bloch
equations indicate that it is possible to realize mirrorless op-
tical bistability �2–5�. Also, an additional inversion-
dependent frequency shift appears. This frequency shift,
called the Lorentz redshift, was experimentally measured in
the reflection spectrum of a dense alkali-metal vapor �6,7�.
The Lorentz redshift can cause a pulse to acquire a dynamic
chirp, which enables soliton formation at a very low level of
atomic excitation �8,9�. In a collection of three-level atoms,
local-field effects can lead to inversionless gain and the en-
hancement of the absorptionless refractive index by more
than two orders of magnitude �10–13�. Successful experi-
mental attempts to realize this enhancement of the refractive
index have been reported �14,15�.

A phenomenological approach to treating local-field ef-
fects in nonlinear optics was proposed by Bloembergen �16�.
He found that the local-field-corrected second-order nonlin-
ear susceptibility scales as three powers of the local-field
correction factor L, which is given in terms of dielectric per-
mittivity ��1� for a uniform material as

L =
��1� + 2

3
. �1�

The above expression is referred to as the Lorentz factor. It
has been understood that Bloembergen’s result can be gener-

alized to a higher-order nonlinearity, and that the correspond-
ing ith-order nonlinear susceptibility should scale as Li+1

�see, for example, Refs. �17,18��. In this paper we show theo-
retically that Bloembergen’s approach, when consistently ap-
plied, actually leads in fact to a much more complicated form
for the nonlinear susceptibility. This is due to the presence of
a cascading effect.

Cascading is a process in which a lower-order nonlinear
susceptibility contributes to higher-order nonlinear effects in
a multistep fashion; it has been a field of interest in nonlinear
optics for some time. Macroscopic cascading has a nonlocal
nature, in that the intermediate field generated by a lower-
order nonlinearity propagates to contribute to a higher-order
nonlinear process by nonlinearly interacting with the funda-
mental field �19–28�. Thus, it has been acknowledged that
the experimentally measured third-order susceptibility can
include contributions proportional to the square of the
second-order susceptibility �19–21�. On the other hand, it has
also been shown that nonlinear cascading is possible due to
the local nature of the field acting on individual molecules in
the medium �21,29–34�. This local-field-induced micro-
scopic cascading does not require propagation and phase
matching, and has a purely local character.

The fact that local-field effects create cascaded contribu-
tions of the lowest order hyperpolarizability �at

�2� to the third-
order susceptibility was first demonstrated by Bedeaux and
Bloembergen �29�. They presented a general relationship be-
tween macroscopic and microscopic nonlinear dielectric re-
sponse, obtained neglecting the pair correlation effect, which
was later taken into account by Andrews et al. �33�. All the
studies conducted thus far have concentrated on treating the
local cascading contribution of �at

�2� to third-order nonlinear
effects, which only arises if the constituent molecules lack
center of inversion symmetry.

We present a theoretical analysis of the nonlinear re-
sponse of a two-level atom, treated up to the fifth order of
nonlinearity, with local-field effects taken into account. In
Sec. II, we address this problem by solving the local-field-
corrected Maxwell-Bloch equations. We expand the total
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susceptibility as a Taylor series in the electric field. We find
that the resulting expression for the fifth-order nonlinear sus-
ceptibility is in disagreement with the straightforward gener-
alization of Bloembergen’s result �16� to fifth-order response.
We resolve this apparent contradiction by solving the prob-
lem using a more careful implementation of Bloembergen’s
approach �29�. The detailed calculation shows that there is no
disagreement between the results of the local-field-corrected
Maxwell-Bloch equations and that careful implementation.
Moreover, the results show that there is a cascaded contribu-
tion coming from the third-order microscopic hyperpolariz-
ability, together with the naively expected fifth order nonlin-
ear term. This cascaded contribution is a consequence of
local-field effects.

In Sec. III we analyze the relative values of the contribu-
tions from the fifth- and third-order microscopic hyperpolar-
izabilities to ��5�, and we find that under certain conditions
the cascaded third-order contribution can be as large as the
fifth-order contribution.

II. THEORETICAL APPROACHES

A. Maxwell-Bloch equations approach

A collection of two-level atoms with ground and excited
states denoted, respectively, by a and b, interacting with an
optical field closely tuned to an atomic resonance of the sys-
tem, can be described by the Maxwell-Bloch equations
�2,17�

�̇ = �i� −
1

T2
�� −

1

2
i�Ew �2a�

and

ẇ = −
w + 1

T1
+ i��E�* − �*E*�� . �2b�

Here E�t� is the slowly varying amplitude of the macroscopic

electric field Ẽ�t�=E�t�exp�−i�t�+c.c., and the total �linear

and nonlinear� polarization P̃�t�= P�t�exp�−i�t�+c.c. in-
volves

P�t� = N	*��t� , �3�

where N is the number density of atoms, 	 is the dipole
transition moment of the two-level system from the ground
to excited state, and ��t� is the slowly varying amplitude of
coherence 
�t�, that is,


�t� = ��t�exp�− i�t� . �4�

In Eq. �2�, �=2	 /�, �=�−�ba is the detuning of the optical
field frequency � from the atomic resonance frequency �ba,
T1 and T2 are, respectively, the population and coherence
relaxation times, and w is the population inversion; we as-
sume that the equilibrium value of w is weq=−1, correspond-
ing to the ground state. According to the prescription of Lor-
entz �35�, the field that appears in Eqs. �2� is actually the
local field Eloc, which can be expressed in terms of the aver-
age field E and the polarization as

Eloc = E +
4�

3
P . �5�

Expression �5� for the Lorentz local field can be substituted
into the Maxwell-Bloch Eqs. �2� to yield

�̇ = �i� + i�Lw −
1

T2
�� −

1

2
i�wE �6a�

and

ẇ = −
w + 1

T1
+ i��E�* − �*E*�� . �6b�

The term �Lw entering the equation for � introduces an
inversion-dependent frequency shift, which is a consequence
of local-field effects; the quantity �L is called Lorentz red-
shift and is given by

�L = −
4�

3

N�	�2

�
. �7�

The steady-state solutions to Eqs. �6� are

w = −
1

1 +
�E�2/�Es

0�2

1 + T2
2�� + �Lw�2

�8a�

and

� =
	

�

wE

� + �Lw + i/T2
. �8b�

In Eq. �8a� we introduced saturation field strength Es
0, de-

fined as

�Es
0�2 =

�2

4T1T2�	�2
. �9�

As a consequence of the presence of the local-field-
induced inversion-dependent frequency shift �Lw in Eq.
�8a�, the steady-state solution for the population inversion w
becomes a cubic equation. In a certain range of parameters it
has three real roots with absolute values not exceeding unity.
The existence of three different physically meaningful solu-
tions for the population inversion is associated with the phe-
nomenon of local-field-induced optical bistability �2,4,5�,
first discussed by Hopf, Bowden, and Louisell �2�. In the
appendix we identify the parameter space in which Eq. �8a�
has multiple physical solutions, and show that it cannot be
reached for the example system we consider later in this
paper, the excitation of a collection of sodium atoms at fre-
quencies close to the 3s→3p resonance.

For such systems, the nonlinear response can be studied
through an approximate solution of Eq. �8a�, obtained
through a power-series expansion with respect to the electric
field parameter x= �E�2 / �Es

0�2. Assuming x to be a small quan-
tity, we perform a Taylor series expansion of w in terms of x,
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retaining only terms up to the second power, as we interested
only in treating saturation effects up to the fifth order in E.
The resultant solution for w takes the form

w = − 1 +
1

1 + T2
2�� − �L�2

�E�2

�Es
0�2

−
1 + T2

2��2 − �L
2�

�1 + T2
2�� − �L�2�3

�E�4

�Es
0�4

.

�10�

The total polarization can be expressed in terms of the total
susceptibility � as P=�E. From Eq. �3�, we find that

� =
P

E
=

N	*�

E
. �11�

Substituting the steady-state solution for the coherence � in
the form �8b� into Eq. �11�, we obtain

� =
N�	�2T2

�

w

T2�� + �Lw� + i

=
N�	�2

�

�− w�
��ba + �L�− w� − �� − i/T2

. �12�

Equations �10� and �12� illustrate the physical effect of the
nonlinearity: It is through the modification of the inversion
parameter w from its equilibrium value of −1, and that modi-
fication is twofold. First, the overall amplitude of the re-
sponse is modified by the fact that −w differs from unity, and
second, the resonant frequency is modified from �ba+�L
�the Lorentz-shifted low-intensity resonance frequency� to
�ba+�L�−w�.

It is convenient to represent the total susceptibility as a
power series expansion with respect to the electric field:

� = ��1� + 3��3��E�2 + 10��5��E�4 + ¯ . �13�

Then, substituting the expansion of the population inversion
�10� into Eq. �12� and making use of the representation �13�
of the total susceptibility, we find the expressions for the
linear and the nonlinear susceptibilities to be

��1� = −
N�	�2T2

�

T2�� − �L� − i

1 + T2
2�� − �L�2 , �14a�

��3��Es
0�2 =

N�	�2T2

3�

�T2� + i��T2�� − �L� − i�2

�1 + T2
2�� − �L�2�3 , �14b�

and

��5��Es
0�4 = −

N�	�2T2

10�

�T2� + i��1 − iT2�L + T2
2�� − �L��� + 2�L��

�1 + T2
2�� − �L�2�3�T2�� − �L� + i�2 . �14c�

B. The naive local-field correction

We next attempt to bring expressions �14� for the local-
field-corrected susceptibilities to the form of Bloembergen’s
result. The straightforward generalization �17,18� of the
Bloembergen’s result to the case of the saturation effects
�which are described by an odd-order nonlinearity as ��i�

=��i���=�+�−�+ ¯ �� reads

��i� = N�at
�i��L�i−1L2, �15�

where �at
�i� is the ith-order microscopic hyperpolarizability.

Using Eqs. �2� and �4� for an isolated atom in free space,
we write

p̃�t� = p exp�− i�t� + c.c. �16�

with

p = 	*� �17�

for the atom’s dipole moment p. The Taylor series expansion
for p with respect to the electric field yields

p = �at
�1�E + 3�at

�3��E�2E + 10�at
�5��E�4E + ¯ . �18�

Here

�at
�1� = −

�	�2T2

�

T2� − i

1 + T2
2�2 �19�

is the linear polarizability and

��at�
�3� �Es

0�2 =
�	�2T2

3�

T2� − i

�1 + T2
2�2�2 �20a�

and

��at�
�5� �Es

0�4 = −
�	�2T2

10�

T2� − i

�1 + T2
2�2�3 �20b�

are the third-order and fifth-order microscopic hyperpolariz-
abilities, respectively.

The definition of the factor L in terms of the dielectric
function ��1� is given by Eq. �1�. The next step is to find an
expression for the factor L in terms of the detuning � and the
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Lorentz redshift �L. Setting w=−1 in Eq. �12�, we arrive at

��1� = −
N�	�2T2

�

1

T2�� − �L� + i
, �21�

and so

��1� = 1 + 4���1� = 1 −
4�N�	�2T2

�

1

T2�� − �L� + i
. �22�

Using Eq. �22� in Eq. �1�, we obtain

L =
T2� + i

T2�� − �L� + i
. �23�

Making use of Eq. �19� for microscopic polarizability, Eqs.
�20� for microscopic hyperpolarizabilities, and Eq. �23� for
factor L, we find that

N�at
�1�L = ��1� �24a�

of Eq. �14a�,

N�at
�3��L�2L2 = ��3� �24b�

of Eq. �14b�, but

N�at
�5��L�4L2 � ��5� �24c�

of Eq. �14c�. In fact,

N�at
�5��L�4L2 = ��5� 1 + T2

2�� − �L�2

1 − iT2�L + T2
2�� − �L��� + 2�L�

.

�25�

Thus, the naive local-field correction �15� in terms of L’s is
in disagreement with the correct result derived from the
Maxwell-Bloch equations.

To find the origin of this disagreement, we address the
problem of treating the saturation up to the fifth order of
nonlinearity, following the recipe suggested by Bloembergen
�16�, rather than using the straightforward generalization
given by Eq. �15�. Our calculations are presented in the fol-
lowing subsection.

C. Bloembergen’s approach

The polarization P entering Eq. �5� is the total polariza-
tion, given by the sum of the contributions proportional to
first, third and fifth power of local electric field as

P = P�1� + P�3� + P�5� + ¯ . �26�

Here

P�1� = N�at
�1�Eloc, �27a�

P�3� = N�at
�3��Eloc�2Eloc, �27b�

and

P�5� = N�at
�5��Eloc�4Eloc. �27c�

Using Eq. �5� in Eq. �27a�, we obtain

P�1� =
��1� − 1

4�
	E +

4�

3
P�3� +

4�

3
P�5� + ¯ 
 . �28�

The electric displacement vector D is defined as

D = E + 4�P = E + 4�P�1� + 4�P�3� + 4�P�5� + ¯ .

�29�

Substituting Eq. �28� into Eq. �29�, we find that

D = ��1�E + 4�PNLS, �30�

where

PNLS = L�P�3� + P�5� + ¯ � �31�

is the nonlinear source polarization, introduced by Bloember-
gen �16�.

Substituting expression �28� for the polarization P�1� into
Eq. �26� for the total polarization, we find that

P = ��1�E + PNLS. �32�

Substituting Eq. �5� for the local field into Eqs. �27b� and
�27c� for the polarizations P�3� and P�5� and dropping out the
terms scaling with higher than the fifth power of the electric
field, we obtain

P�3� = 3N�at
�3��L�2L�E�2E + �24�N2��at

�3��2�L�4L2

+ 12�N2��at
�3��2�L�6��E�4E �33a�

and

P�5� = 10N�at
�5��L�4L�E�4E . �33b�

Note that P�3� contains terms proportional to the fifth power
of the electric field. Substituting Eq. �33� into Eq. �31�, and
Eq. �31� into Eq. �32�, we find the total polarization to be

P = ��1�E + 3N�at
�3��L�2L2�E�2E + �24�N2��at

�3��2�L�4L3

+ 12�N2��at
�3��2�L�6L + 10N�at

�5��L�4L2��E�4E + ¯ .

�34�

Alternatively, the total polarization can be represented as a
Taylor series expansion with respect to the average electric
field as

P = �E = ��1�E + 3��3��E�2E + 10��5��E�4E + ¯ . �35�

Equating �34� and �35�, we obtain

��1� = N�at
�1�L , �36a�

��3� = N�at
�3��L�2L2, �36b�

and

��5� = N�at
�5��L�4L2 +

24�

10
N2��at

�3��2�L�4L3 +
12�

10
N2��at

�3��2�L�6L .

�36c�

Using expression �23� for the local-field correction factor,
obtained in Sec. II C, one can show that Eqs. �36� for the
local-field-corrected first, third, and fifth order susceptibili-
ties are equivalent to Eqs. �14�, obtained using the Maxwell-
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Bloch approach. Thus, two different approaches—the
Lorentz-Maxwell-Bloch equations and Bloembergen’s
approach—bring us to the same result for the local-field-
corrected susceptibilities. This is of course not surprising,
since both approaches are just different ways of implement-
ing Bloembergen’s scheme.

The expressions for local-field-corrected ��1� and ��3� do
not display any peculiarity, while Eq. �36c� for ��5� deserves
special attention. The first term on the right-hand side of the
equation is due to a direct contribution from the fifth-order
microscopic hyperpolarizability, while the two extra terms
come from the contribution of the third-order microscopic
hyperpolarizability. These extra contributions are a manifes-
tation of local-field effects. We denote for convenience the
direct contribution to the fifth-order susceptibility as

�direct
�5� = N�at

�5��L�4L2. �37�

Similarly, the sum of the second and third terms on the left-
hand side of Eq. �36c� �the cascaded contribution to ��5�� can
be denoted as

�cascaded
�5� =

12�

10
N2�2��at

�3��2�L�4L3 + ��at
�3��2�L�6L� . �38�

Then the total local-field-corrected ��5�, which is the sum of
the two contributions, can be written as

��5� = �direct
�5� + �cascaded

�5� . �39�

As we pointed out in preceding sections of this paper, the
result that we obtained for ��5� does not agree with that pre-
dicted by a straightforward generalization of the Bloember-
gen’s result given by Eq. �15�. It is evident from Eqs. �15�
and �36c� that the generalization �15� predicts the direct term
only �the term proportional to �at

�5�� in the expression for the
local-field-corrected ��5�, and does not account for the cas-
caded contributions coming from the third-order microscopic
hyperpolarizability. We have shown in this section that the
cascaded terms arise from substituting the nonlinear local
field into the expression �27b� for P�3�. If we were limiting
ourselves to considering the third-order nonlinearity �i.e., the
lowest-order nonlinearity in our system�, then we would
need only to substitute the linear local field

Eloc = E +
4�

3
PL,

into Eq. �27b� to deduce that

P�3� = 3N�at
�3��L�2L�E�2E ,

instead of P�3� in the form of Eq. �33a�. Thus, one clearly
cannot simply use the generalization �15� to treat nonlinear-
ity of the order higher than the lowest order of the nonlin-
earity present in the system of interest.

To develop insight into the relative contributions of the
third- and fifth-order hyperpolarizabilities to the local-field-
corrected fifth-order susceptibility �36c�, we conduct a com-
parative analysis of the direct and cascaded terms. The analy-
sis identifies the importance of the cascaded terms, and is
presented in the following section.

III. NUMERICAL ANALYSIS

We perform our analysis based on a realistic example,
taking the values of parameters for the sodium 3s→3p tran-
sition. The transition dipole moment is �	�=5.510−18 esu
and the population relaxation time is T1=16 ns. The value of
the coherence relaxation time T2 can be found according to
�6�

�2 =
�nat

2
+ �self.

Here �2=1 /T2 is the atomic linewidth, �nat=1 /T1 is the natu-
ral �radiative� linewidth, and the collisional contribution �self
is given by

�self =
4�N�	�2

�
�2Jg + 1

2Je + 1
,

where Jg and Je are the angular momentum quantum num-
bers of the ground and excited states, respectively �for the
sodium 3s→3p transition, Jg=0 and Je=1�.

In the theoretical analysis developed in the previous sec-
tions of this paper we have implicitly used the rotating wave
approximation �RWA� to describe the atomic response. Be-
fore proceeding here we confirm the validity of that approxi-
mation for our example of the sodium 3s→3p transition. We
begin by comparing our RWA expression �21� to a more
precise expression in which the RWA approximation is not
made,

�non-RWA
�1� =

N�	�2

�
	 1

��ba − � + �L� − i/T2

+
1

��ba + � − �L� + i/T2

 , �40�

where it is the second term in Eq. �40� that is missing
in the RWA. Evaluating Re��non-RWA

�1� � /Re���1�� and
Im��non-RWA

�1� � / Im���1�� over the range of atomic densities and
frequency detunings that we use in this section, we find that
even at N=1017 cm−3 the maximum deviations of those ra-
tios from unity are only a fraction of a percent. And even if
the ratios are raised to the third and fifth powers, as a rough
sense of how the higher order susceptibilities will be sensi-
tive to expressions beyond the RWA, we find that their maxi-
mum deviations from unity are at most a few percent. Thus
we feel comfortable in using the RWA in our identification of
the range of validity of different approximations, and in our
comparison of the contributions of the direct and cascaded
fifth order terms.

Our goal is to identify the parameter space where the
power-series expansion of the local-field-corrected suscepti-
bility, including the total ��5� �36c�, is valid. This defines
what we call the “full fifth-order model.” Along the way it
will be useful to also identify the ranges of validity of some
other susceptibility models: �a� the local-field-corrected ��1�,
which is the expression for the total susceptibility neglecting
the nonlinear interactions �we refer to this as the “linear
model”�; �b� the power-series expansion for the local-field-
corrected total susceptibility given up to the third order of
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nonlinearity �we refer to this expansion as the “third-order
model”�; �c� the power-series expansion for the local-field-
corrected total susceptibility given up to fifth order of non-
linearity neglecting the cascaded contribution �we refer to
this as the “direct fifth-order model”�; �d� the full expression
for the susceptibility obtained without accounting for local-
field effects, given as �17�

� =
− N�	�2T2

�

�T2 − i

1 + �2T2
2 + �E�2/�Es

0�2
�41�

�we refer to this model as “full model without LFE”�.
We identify the range of parameters over which the mod-

els are valid by comparing them to the full expression for the
local-field-corrected total susceptibility

� =
N�	�2T2

�

w

T2�� + �Lw� + i
, �42�

where the population inversion w is given by Eq. �8a� �we
refer to this model as the “full model”�. In order for a model
to be valid for a given range of parameters �the atomic den-
sity and electric field strength�, we require that at a given
atomic density and normalized electric-field strength
�E�2 / �Es

0�2 the difference between the full model and the other
model at any detuning is not greater than 3% of the peak
value of the full model. Using this criterion, the ranges over

which the models are valid are marked with colored areas in
Fig. 1. The full model without LFE can be used at higher
strengths of the applied field where the saturation effect is
strong, while at small values of the atomic densities the
local-field effects are unimportant and one can neglect them
in both the full model and the power series expansions.

Comparing the full fifth-order model to other power-series
expansion models, we conclude that the former has a broader
range of validity. As well, we find that the full fifth-order
model gives a more precise description of the local-field-
corrected susceptibility than the other power-series expan-
sions in the ranges where all these models are valid. As an
example, we plot the real and imaginary parts of the local-
field-corrected susceptibility given by the different models as
the function of the normalized frequency detuning �T2,
where the value of T2 is taken at zero atomic density, in Fig.
2. We see that for a given set of parameters all the power-
series expansions describe the total susceptibility fairly well,
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FIG. 1. �Color online� The ranges of validity of the various
models described in the text for the total susceptibility of a collec-
tion of two-level atoms. The area at the bottom shows the range of
validity of the linear model; local field effects �LFEs� are important
in the region on the right but can be ignored on the left. Moving
upward on the plot, the next area shows the range of validity of the
third-order model. Again, LFEs can be ignored in the region on the
left, and of course this model also accurately describes the response
in the region below it. The next two regions show the ranges of
validity of the direct fifth-order model and the full fifth-order
model. In the white region above these colored regions, the full
model of Eq. �42� must be used, and finally in the region at the top
of the plot accurate predictions can be obtained by ignoring LFEs as
long as the full model of Eq. �41� is used.
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FIG. 2. �Color online� Real �a� and imaginary �b� parts of the
total susceptibility of a collection of two-level atoms as functions of
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2 =10−3. The

susceptibility is given by different models, as depicted in the
legend.
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but the inset reveals that the full fifth-order model works the
best of all, as there is no apparent disagreement between it
and the full model.

We now consider how the presence of the cascaded term
affects the size and frequency dependence of ��5�. In Fig. 3
we plot the ratio of the absolute values of the cascaded and
direct terms as the function of the normalized detuning �T2
for several values of the atomic density N within the range of
11014 to 11017 cm−3. We take the value of T2 at N=0 in
the normalized frequency detuning. It can be seen from Fig.
3 that the influence of the local-field effects is twofold. First,
the local-field effects tend to shift the resonance feature to-
wards lower frequencies by the amount �L. The frequency
shift grows linearly with the increase of the density N. Sec-
ond, the ratio ��cascaded

�5� � / ��direct
�5� � grows with increasing atomic

density, as is especially clear from the inset in Fig. 3. This
growth saturates at atomic densities higher than 1016 cm−3,
because homogeneous collisional broadening comes into
play. Clearly, the cascaded term has a non-negligible contri-
bution to the fifth-order susceptibility.

The result shown in Fig. 3, although informative, does not
present a complete picture of the contribution to ��5� from the
cascaded term. We can learn more by considering the real
and imaginary parts of �direct

�5� and �cascaded
�5� . These are plotted

as functions of the normalized detuning �T2, where T2 is
taken at N=0, for different values of the atomic density in
Figs. 4�a�, 4�c�, and 4�e�. For the purpose of comparison, we
also plot the total fifth-order susceptibility given by Eq. �39�,
which is the sum of the direct and cascaded contributions,
and �direct

�5� �see Figs. 4�b�, 4�d�, and 4�f��. The cascaded terms
make an insignificant contribution until atomic densities
reach on the order of 1013−1014 cm−3 �see Figs. 4�a� and
4�b��. As the atomic density increases, the contribution from
the cascaded term becomes more pronounced, as one can see

from Fig. 4�d�. The difference becomes even more signifi-
cant with further increase of the atomic density, and saturates
at the densities higher than 1016 cm−3.

Taking a careful look at the contribution to ��5� from the
cascaded term �better seen in Fig. 4�f��, one can see not only
a line shape distortion and a frequency shift of the maximum,
but also a sign change of the imaginary part of ��5�

in a certain range of detuning. This sign change, of course,
cannot be observed in the total response of the two-level
atom, since there is net absorption.

IV. CONCLUSION

We have performed a theoretical analysis of saturation
effects in a dense medium using both the local-field-
corrected Maxwell-Bloch equations and Bloembergen’s ap-
proach. The expressions for the nonlinear susceptibilities,
obtained using the two approaches, are in agreement. The
equation obtained for the local-field-corrected fifth-order
nonlinear susceptibility contains not only an obvious term
coming from the fifth-order hyperpolarizability contribution
�the direct term�, but also two extra terms, proportional to the
second power of the third-order hyperpolarizability. The two
extra terms are induced purely by local-field effects. This
kind of cascaded contribution from the lower-order hyperpo-
larizability to the higher-order nonlinear terms will appear in
high-order susceptibilities describing other nonlinear effects
as well.

We presented a comparative study of the direct contribu-
tion and the cascaded contribution to ��5� for the sodium
3s→3p transition. Our analysis shows that the relative con-
tribution of the cascaded term to ��5� grows with the increase
of the atomic density and saturates at atomic densities higher
than 1016 cm−3. At low atomic densities �N�1
1014 cm−3� the cascaded contribution to ��5� is insignifi-
cant. At high atomic densities �N�11015 cm−3� the value
of the cascaded contribution is on the same order of magni-
tude as that of the direct contribution.
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APPENDIX: MULTIPLE SOLUTIONS
FOR THE POPULATION INVERSION

Let us consider in which part of parameter space Eq. �8a�
has more than one physical solution. It is convenient to re-
write the equation in the form

w�1 + �� + �Lw�2 + x� = − �1 + �� + �Lw�2� , �A1�

where �=�T2 is the detuning parameter, �L=�LT2 is the
Lorentz redshift parameter, and x= �E�2 / �Es

0�2 is the electric
field parameter. We rewrite Eq. �A1� as �36�

w3 + a2w2 + a1w + a0 = 0, �A2�

where
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FIG. 3. �Color online� The ratio R= ��cascaded
�5� � / ��direct

�5� � of the ab-
solute values of the cascaded and direct contributions to the local-
field-corrected ��5� as a function of the normalized detuning �T2

plotted for several values of the atomic density falling into the
range between 11014 and 11017 cm−3. The inset resolves the
absolute values of the ratio for the atomic densities N=1014 and
1015 cm−3.
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a0 =
1 + �2

�L
2 , �A3a�

a1 =
1 + �2 + x + 2��L

�L
2 , �A3b�

and

a2 =
2� + �L

�L
. �A3c�

Then, constructing

q =
a1

3
−

a2
2

9
�A4a�

and

r =
a1a2 − 3a0

6
−

a2
3

27
, �A4b�

we look at the sign of the parameter
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FIG. 4. �Color online� Real and imaginary parts of the direct and cascaded contributions to ��5�, �direct
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sum of the contributions �total

�5� plotted together with �direct
�5� �b�, �d�, �f� as functions of the normalized detuning for different values of the

atomic density N.

DOLGALEVA, BOYD, AND SIPE PHYSICAL REVIEW A 76, 063806 �2007�

063806-8



D = q3 + r2. �A5�

If D�0, there is one real root and a pair of complex conju-
gate roots; if D=0 all roots are real and at least two are
equal; if D�0 all three roots are real �irreducible case� �36�.
In order to achieve multiple physical solutions, we need the
values of w to be real �and in the range −1 to +1�. Certainly
a necessary condition for this is D�0. Introducing

s1 = �r + �q3 + r2�1/2�1/3 �A6a�

and

s2 = �r − �q3 + r2�1/2�1/3, �A6b�

we write the solutions to Eq. �A2� in the form �36�

w1 = �s1 + s2� −
a2

3
, �A7a�

w2 = −
1

2
�s1 + s2� −

a2

3
+

i�3

2
�s1 − s2� , �A7b�

and

w3 = −
1

2
�s1 + s2� −

a2

3
−

i�3

2
�s1 − s2� . �A7c�

We now consider certain fixed values of the redshift pa-
rameter �L, and investigate the ranges of � and x for which
multiple physical solutions exist. Such ranges are marked
with contours on the graphs in Fig. 5. For the values of
parameters � and x lying inside the contours there are three
physical solutions to Eq. �A2� with the corresponding values
of w being within the range �−1,1�. The area outside the

contours corresponds to a single physical solution for w, with
the other two solutions being complex and, therefore, non-
physical. According to our numerical analysis, summarized
in Fig. 5, multiple physical solutions only arise for ��L �
�4.16. In sodium vapor that we consider as an example for
our analysis in Sec. VI, such large values of �L are not
achievable; raising the density to increase �L also decreases
T2 due to homogeneous broadening, and �L can never get
this large.
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